
图106136-1:
本文来源:http://r6d.cn/aa4JR
Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。
Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种对 Java 集合运算和表达的高阶抽象。
Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。
本文会对Stream的实现原理进行剖析。
Stream的组成与特点
Stream(流)是一个来自数据源的元素队列并支持聚合操作:
元素是特定类型的对象,形成一个队列。Java中的Stream并不会向集合那样存储和管理元素,而是按需计算
数据源流的来源可以是集合Collection、数组Array、I/O channel, 产生器generator 等
聚合操作类似SQL语句一样的操作, 比如filter, map, reduce, find, match, sorted等
和以前的Collection操作不同, Stream操作还有两个基础的特征:
Pipelining: 中间操作都会返回流对象本身。这样多个操作可以串联成一个管道, 如同流式风格(fluent style)。这样做可以对操作进行优化, 比如延迟执行(laziness evaluation)和短路( short-circuiting)
内部迭代:以前对集合遍历都是通过Iterator或者For-Each的方式, 显式的在集合外部进行迭代, 这叫做外部迭代。Stream提供了内部迭代的方式, 通过访问者模式 (Visitor)实现。
和迭代器又不同的是,Stream 可以并行化操作,迭代器只能命令式地、串行化操作。顾名思义,当使用串行方式去遍历时,每个 item 读完后再读下一个 item。而使用并行去遍历时,数据会被分成多个段,其中每一个都在不同的线程中处理,然后将结果一起输出。
Stream 的并行操作依赖于 Java7 中引入的 Fork/Join 框架(JSR166y)来拆分任务和加速处理过程。Java 的并行 API 演变历程基本如下:
1.0-1.4 中的 java.lang.Thread
5.0 中的 java.util.concurrent
6.0 中的 Phasers 等
7.0 中的 Fork/Join 框架
8.0 中的 Lambda
Stream具有平行处理能力,处理的过程会分而治之,也就是将一个大任务切分成多个小任务,这表示每个任务都是一个操作:
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9); numbers.parallelStream() .forEach(out::println); 可以看到一行简单的代码就帮我们实现了并行输出集合中元素的功能,但是由于并行执行的顺序是不可控的所以每次执行的结果不一定相同。
如果非得相同可以使用forEachOrdered方法执行终止操作:
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9); numbers.parallelStream() .forEachOrdered(out::println); 这里有一个疑问,如果结果需要有序,是否和我们的并行执行的初衷相悖?是的,这个场景下明显无需使用并行流,直接用串行流执行即可, 否则性能可能更差,因为最后又强行将所有并行结果进行了排序。
OK,下面我们先介绍一下Stream
来源:今日头条
作者:安静的高级架构师
点赞:16
评论:21
标题:Java8中Stream原理分析
原文:https://www.toutiao.com/article/6924191825548886541
侵权告知删除:yangzy187@126.com
转载请注明:网创网 www.netcyw.cn/b106136.html




